A false acceptance error controlling method for hyperspherical classifiers

نویسندگان

  • Chen-Wen Yen
  • Chieh-Neng Young
  • Mark L. Nagurka
چکیده

Controlling false acceptance errors is of critical importance in many pattern recognition applications, including signature and speaker veri$cation problems. Toward this goal, this paper presents two post-processing methods to improve the performance of hyperspherical classi$ers in rejecting patterns from unknown classes. The $rst method uses a self-organizational approach to design minimum radius hyperspheres, reducing the redundancy of the class region de$ned by the hyperspherical classi$ers. The second method removes additional redundant class regions from the hyperspheres by using a clustering technique to generate a number of smaller hyperspheres. Simulation and experimental results demonstrate that by removing redundant regions these two post-processing methods can reduce the false acceptance error without signi$cantly increasing the false rejection error. c © 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش‌های طبقه‌بندی‌کننده حداکثر مشابهت و حداقل فاصله از میانگین در تهیه نقشه پوشش اراضی (مطالعه موردی: استان اصفهان)

Land cover maps derived from satellite images play a key role in regional and national land cover assessments. In order to compare maximum likelihood and minimum distance to mean classifiers, LISS-III images from IRS-P6 satellite were acquired in August 2008 from the western part of Isfahan. First, the LISS-III image was georeferenced. The Root Mean Square error of less than one pixel was the r...

متن کامل

Maximum Margin Classifiers with Specified False Positive and False Negative Error Rates

This paper addresses the problem of maximum margin classification given the moments of class conditional densities and the false positive and false negative error rates. Using Chebyshev inequalities, the problem can be posed as a second order cone programming problem. The dual of the formulation leads to a geometric optimization problem, that of computing the distance between two ellipsoids, wh...

متن کامل

Hyperplane Training of a Hypersphere Classifier

A novel classifier architecture is introduced which belongs to both hyperplane and hypersphere families. The basic computational unit in the architecture is a perceptron whose input is augmented by its squared length. Traditional methods of training hyperplane classifiers (perceptron training algorithm, backpropagation, etc.) function in the augmented input space, and induce hyperspherical deci...

متن کامل

Reducing False Acceptance Rate in Offline Writer Independent Signature Verification System through Ensemble of Classifiers

Handwritten signature verification is a very challenging and critical task. This work aims at proposing an efficient offline handwritten signature verification model using writer independent approach. The prime focus of this work is on reducing the false acceptance rate of genuine signatures of writers while letting false rejection rate at a satisfactory level through ensemble of classifiers. T...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2004